BENHA UNIVERSITY SHOUBRA FACULTY OF ENGINEERING CIVIL ENGINEERING DEPARTEMENT Master of Engineering Sciences Code: STR602

Final Term Exam

Computation of Nonlinear Analysis

2017 - 2016دكتور المادة د/ أحمد سعودي د/ طه عوض الله السيد

Final Term Exam Saturday 03/06/2017 **Computation of Nonlinear Analysis Duration: 3.0 hours** No. of questions: 2

Total Mark: 60 Marks

Closed Book Exam The Exam consists of two pages

* Answer all the following questions *Systematic arrangement of calculations and clear neat sketches are essential.

Question (1): Discuss the following items (30 Marks)

(1) Compression softening.

- (2) Strain hardening.
- (3) Tension stiffening.
- (4) Linear Analysis.
- (5) Non-Linear Analysis.
- (6) Types of nonlinearity.
- (7) Importance function and purpose of the nonlinear analysis of R.C elements.
- (8) The basic assumptions considered throughout the nonlinear analysis of the R.C plane frames.
- (9) The major factors causing nonlinear behavior of R.C elements.

(10) The causes and factors leading to the difference in the nonlinear analysis of R.C structures.

(11) Loading techniques.

Question (2)

(30 Marks)

For the given section shown in Figure 1, the axial strain at mid height of the section $\epsilon_0 = -0.0009$ and the slope $\varphi = -0.0001$ (d' = d'' = 2.5 cm). Using the given stress-strain curves for steel and concrete in tension and compression, it is required to:

- (a) Calculate and draw the strain distribution;
- (b) Calculate and draw the stress distribution;
- (c) Calculate axial, coupling and flexural stiffness's (A,B and D) using the secant modulus of elasticity;
- (d) Calculate section capacity (M and N);

Best Wishes BOARD OF EXAMINERS Dr. Ahmed Soudi Dr. Taha Ibrahim

Final Term Exam Saturday 03/06/2017 Computation of Nonlinear Analysis Duration: 3.0 hours No. of questions: 2

Concrete Stress- Strain Curve in Compression

Trilinear Idealized Stress-Strain Curve for Steel Reinforcement in Tension and Compression

Best Wishes BOARD OF EXAMINERS Dr. Ahmed Soudi Dr. Taha Ibrahim